Ecuaciones de primer grado

Una ecuación de primer grado es una igualdad de dos expresiones en las que aparece una incógnita cuyo valor está relacionado a través de operaciones aritméticas. Se denominan ecuaciones de primer grado si el exponente de la incógnita es uno.
Para resolver una ecuación de primer grado se deben traspasar los términos de un lado a otro de la ecuación, de manera que todos los términos que tengan la incógnita queden a un lado y los demás al otro, teniendo la precaución de mantener la igualdad de la expresión.
Por eso, cada vez que trasponemos un término se aplica el opuesto (inverso aditivo), tal como se ilustra en el siguiente ejemplo:
Resolver la ecuación:
(x + 3)2 – (x - 1)2 = 3x – (x – 4)
a) Primero desarrollamos todas las operaciones de la expresión
x2 + 6x + 9 – (x2 – 2x + 1) = 3x – x + 4
x2 + 6x + 9 – x2 + 2x – 1 = 3x – x + 4

b) Trasponemos los términos:
x2 + 6x – x2 + 2x –3x + x = 4 – 9 + 1;
c) Reducimos términos semejantes:
6x = -4 ;
d) Dividimos por 6:
x = -4/6
e) Simplificamos por 2:
x = -2/3

No hay comentarios:

Publicar un comentario